Real-Time Information System Integration In Coal Production And Distribution Management
Main Article Content
Abstract
Coal production faces challenges in data management and operational coordination efficiency. This study examines the integration of an information system using AI and real-time capabilities to improve the efficiency and effectiveness of coal production. With a system development approach using the SDLC Waterfall method and dummy data simulation, the system successfully accelerates production monitoring, increases data accuracy, and supports rapid decision-making. These findings provide a strong foundation for developing adaptive and effective mining information systems in the digital era. The applied method delivers optimal results in measuring pressure and temperature as well as detecting coal sensor values using an AI-based IoT system. Evaluation results show a reduction in reporting response time by up to 40%, an increase in stored data accuracy up to 95%, and positive feedback from simulation users regarding ease of access and production monitoring.
Downloads
Article Details
Baigabulov, S., & Ipalakova, M. T. (2024). Virtual Reality Enabled Immersive Data Visualization for Data Analysis. CEUR Workshop Proceedings, 3680.
Butcher, P. W. S., & Ritsos, P. D. (2017). Building immersive data visualizations for the web. Proceedings - 2017 International Conference on Cyberworlds, CW 2017 - in Cooperation with: Eurographics Association International Federation for Information Processing ACM SIGGRAPH, 2017-Janua(September 2017), 142–145. https://doi.org/10.1109/CW.2017.11
Chen, B., Liang, R. Q., Chen, R. Y., & Xu, F. yuan. (2021). The effect of virtual reality training on the daily participation of patients: A meta-analysis. Complementary Therapies in Medicine, 58. https://doi.org/10.1016/j.ctim.2021.102676
Goi, C. L. (2024). The impact of VR-based learning on student engagement and learning outcomes in higher education. Teaching and Learning for a Sustainable Future: Innovative Strategies and Best Practices, (October), 207–223. https://doi.org/10.4018/978-1-6684-9859-0.ch012
Gronowski, A., Arness, D. C., Ng, J., Qu, Z., Lau, C. W., Catchpoole, D., & Nguyen, Q. V. (2024). The impact of virtual and augmented reality on presence, user experience and performance of Information Visualisation. Virtual Reality, 28(3). https://doi.org/10.1007/s10055-024-01032-w
Hullman, J., & Gelman, A. (2021). Designing for Interactive Exploratory Data Analysis Requires Theories of Graphical Inference. Harvard Data Science Review, 3(3). https://doi.org/10.1162/99608f92.3ab8a587
Isenberg, P., Isenberg, T., Hesselmann, T., Lee, B., Von Zadow, U., & Tang, A. (2013). Data visualization on interactive surfaces: A research agenda. IEEE Computer Graphics and Applications, 33(2), 16–24. https://doi.org/10.1109/MCG.2013.24
McKinsey & Company. (2021). The state of AI in 2021.
Nugroho, N. (2023). Decision Support System for Selection of Virtual Reality Head-Mounted Display Using the WASPAS Method. Journal of Information System Research (JOSH), 4(3), 811–819. https://doi.org/10.47065/josh.v4i3.3272
Olshannikova Ekaterina, O. A. etc. (2015). Visualizing_Big_Data_Olshannikova_Chapter.pdf.crdownload. Journal of Big Data. https://doi.org/10.1186/s40537-015-0031-2
Polcar, J., Gregor, M., Horejsi, P., & Kopecek, P. (2015). Methodology for designing virtual reality applications. Annals of DAAAM and Proceedings of the International DAAAM Symposium, 2015-Janua(January 2018), 768–774. https://doi.org/10.2507/26th.daaam.proceedings.107
Prendes, C., Lee, K., Cárdenas Ruiz, A. ; Y. M. ; J. M. J. S. B. H., Cheah, M. S., Wong, P. E., Quah, Y. P., … Fernández-Moyano, J. A. (2022). Augmented Reality ( AR ) in Language Learning : A Principled Review of Meltem Huri BATURAY. Computers and Education, 10(2), 13–21.
Privitera, A. G., Fontana, F., & Geronazzo, M. (2024). The Role of Audio in Immersive Storytelling: a Systematic Review in Cultural Heritage. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-19288-4
Ramaseri Chandra, A. N., El Jamiy, F., & Reza, H. (2022). A Systematic Survey on Cybersickness in Virtual Environments. Computers, 11(4). https://doi.org/10.3390/computers11040051
Saravanos, A., & Curinga, M. X. (2023). Simulating the Software Development Lifecycle: The Waterfall Model. Applied System Innovation, 6(6). https://doi.org/10.3390/asi6060108
Saurik, H. T. T., Purwanto, D. D., & Hadikusuma, J. I. (2019). Virtual Reality Technology for Campus Media Information. Jurnal Teknologi Informasi Dan Ilmu Komputer, 6(2), 195–200. https://doi.org/10.25126/jtiik.201961238
Sigala, M., Beer, A., Hodgson, L., & O’Connor, A. (2019). Big Data for Measuring the Impact of Tourism Economic Development Programmes: A Process and Quality Criteria Framework for Using Big Data.
Statista. Virtual reality (VR) Statistics report on the virtual reality (VR) market, Statista (2024).
Sumartias, S., Nugraha, A. R., Bakti, I., Perbawasari, S., Subekti, P., Romli, R., … Komalasari, H. (2020). Virtual reality design as digital learning media in preserving local culture of tarawangsa art. International Journal of Criminology and Sociology, 9, 1948–1960. https://doi.org/10.6000/1929-4409.2020.09.228
Sun Ho Kwon1†, J. K. P. and Y. H. K. (2023). a Systematic Review and Metaanalysis. NeuroEngineering and Rehabilitation. https://doi.org/https://doi.org/10.1186/s12984-023-01219-3
Vergara, D., Rubio, M. P., & Lorenzo, M. (2017). On the design of virtual reality learning environments in engineering. Multimodal Technologies and Interaction, 1(2). https://doi.org/10.3390/mti1020011

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.